Live Drilling
  • Introduction
  • FAQ
  • what's new
    • Latest releases
      • Wells 5
      • LiveRig 5
      • LiveRig 4
      • WITSML Store
    • Operations in Time by Depth Chart
    • Unit Sets
      • Per-Asset Units
      • Unit Conversion
      • Dashboard Configuration
      • Force Follow Asset Units
    • Well casing shoe schematic
    • Wells correlation
    • FFT spectrum
    • Pressure Tests
      • Configuration
      • Automated Standard Pressure Tests
      • Manual Pressure Test
      • LOT/FIT
    • Rig State detection
    • BOP Schematic
      • BOP status register
    • Signal Processing
      • Moving Average
  • Data Flow
    • Introduction
    • Data Ingestion
    • Data Normalization
      • Clock Synchronization
      • Normalized events schema
      • Data indexes and enrichment
      • Unit conversion
      • Auto-Switch
  • Physical Models
    • Introduction
      • Structure of the functions
      • Validation
    • General Equations
      • Static Data Dependencies
      • Pipes Functions
    • Trajectory
      • Introduction
      • Static Data Dependencies
      • Pipes Functions
    • Hydraulic
      • Introduction
      • Static Data Dependencies
      • Pipes Functions
    • Torque and Drag
      • Introduction
      • Static Data Dependencies
      • Pipes Functions
    • Hole Cleaning
      • Introduction
      • Static Data Dependencies
      • Pipes Functions
    • Surge and Swab
      • Introduction
      • Static Data Dependencies
      • Pipes Functions
    • Thermal
      • Introduction
    • Volume Tracker
      • Introduction
      • Pipes Functions
  • Basic Features
    • Charts
      • Channels Charts
        • Temporal Channels Chart
        • Channel Value Chart
        • Depth Channels Chart
        • Data navigation
          • Span Control
      • Rig Allocation Gantt Chart
    • Unit sets
      • Configuration changes on unit sets
      • Depth unit changes
      • Personal units sets
    • Permission schema
    • Import/Export Well
    • Add-ons
  • Static Data
    • Assets
      • Assets Structure
    • Well
      • Introduction
      • Well Schema
      • Well Units
      • Regions, fields and countries
      • Well Design Overview
      • Objectives
    • Intervention
      • Introduction
      • Intervention Schema
      • Intervention Types
      • Scenarios
      • Runs
      • Completion and Abandonment
      • Drilling Section Schema
    • Rig
      • Introduction
      • Rig Schema
      • Physical models configuration
    • Pipes functions
    • REST API Examples
  • Administration
    • High Frequency Data
      • WITSML Null Values
      • Unit Management Tools
      • WITS Custom Mapping
    • Data Normalization
      • Data Management
        • Event Settings
        • Channels Management
      • Data normalization templates
      • Data normalization templates prioritization
      • Auto-Switch
    • Standard Identifiers
    • Static Data
      • Regions, fields and countries
      • Intervention Types
  • LiveRig Collector
    • Introduction
    • Getting Started
    • Connecting to Intelie Live
    • Security
    • Local data storage
    • Data transmission and recovery
    • Monitoring
    • Remote Control
      • APIs
        • /testSourceEndpoint
        • /storeConfiguration
        • /getFromStore
        • /backlog-sync
      • Sources
        • MQTT Topics
        • OPC Requests
        • WITSML Backlog Sync
        • WITSML Object Explorer
        • WITSML Requests
      • Properties
    • HA Deployment
    • Protocols
      • WITSML
      • WITS
      • OPC-DA
      • OPC-UA
      • MODBUS
      • MQTT
      • CSV
      • RAW
    • Protocol conversion
    • Configuration
      • liverig.properties
      • sources.xml
      • store.json
      • modbus.json
      • mqtt.json
      • Configuring an OPC-UA source
      • Multiple event types for WITSML sources
      • Certificate-based authentication for WITSML HTTPS sources
    • LiveRig Collector Appliance
    • Command line Interface (CLI)
  • LIVE EDGE
    • Collector Reader
  • Integrations
    • Introduction
    • WITSML Store
    • REST Output
    • REST Input
    • WellView
    • OpenWells
    • Python
  • DEVELOPER
    • Identified Curves
    • Hidden Units
  • DEPRECATED
    • WITSML Output
    • LiveRig 3.x / 2.x
      • 3.5.0
      • 3.4.0
      • 3.3.0
      • 3.2.0
      • 3.1.0
      • 3.0.0
      • 2.29.0
Powered by GitBook
On this page
  • Outage recovery between the collector and Intelie Live
  • Outage recovery between the collector and the data sources

Was this helpful?

  1. LiveRig Collector

Data transmission and recovery

After the data is gathered by the collector and saved locally, it is transmitted to Intelie Live.

The collector works with a real-time high priority policy. That is, when the network recovers from any outage, the real time data is transmitted immediately and the backlog data is transmitted with low priority in a separate channel with limited bandwidth.

This separation between real-time and non-real-time data also occurs when the collector was just initialized.

There are four channels transmitting the data from the collector to Intelie Live in parallel: control, realtime, retransmission, and remotecontrol.

Outage recovery between the collector and Intelie Live

When the network recovers from an outage between the collector and Intelie Live, all the data that was not transmitted in real time is then transmitted with lower priority, respecting the maximum bandwith defined by the resend_rate parameter, in bytes per second.

As generally the collector and Intelie Live are on separate networks, this is a common situation.

Outage recovery between the collector and the data sources

When there is a problem on the network between the collector and the data sources, the protocol must allow the retrieval of historical data. The WITSML protocol, for example, allows that.

When the network recovers, all the data that was not captured in real time is captured in reversed order (from the most recent to the oldest data samples). This capture is performed by the backlog task. Those data is transmitted right after captured, with low priority, and marked as non-realtime.

In any of the cases, the collector can be restarted without any data loss.

Delayed data, both due to backlog and retransmission tasks, are treated as non-realtime.

As the retransmission tasks occur in an unpredictable order, there is no direct way to infer that all the data previous to a specific moment were transmitted.

PreviousLocal data storageNextMonitoring

Last updated 5 years ago

Was this helpful?